
Avoiding overfitting in multilayer perceptrons

with feeling-of-knowing using self-organizing

maps

Kazushi Murakoshi ∗
Department of Knowledge-based Information Engineering, Toyohashi University

of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi 441-8580, Japan

Received 14 June 2004; revised 24 September 2004; accepted 28 September 2004

Abstract

Overfitting in multilayer perceptron (MLP) training is a serious problem. The
purpose of this study is to avoid overfitting in on-line learning. To overcome the over-
fitting problem, we have investigated feeling-of-knowing (FOK) using self-organizing
maps (SOMs). We propose MLPs with FOK using the SOMs method to overcome
the overfitting problem. In this method, the learning process advances according to
the degree of FOK calculated using SOMs. The mean square error obtained for the
test set using the proposed method is significantly less than that in a conventional
MLP method. Consequently, the proposed method avoids overfitting.
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1 Introduction

Overfitting in multilayer perceptron (MLP) training is a serious problem. The
purpose of this study is to avoid overfitting in on-line learning.

Overfitting is the phenomenon in which a learning algorithm adapts too well
to a training set. The performance for the test set suffers due to the application
of techniques that have learnt the training set too well. Bagging and bootstrap

∗ Corresponding author. phone: +81-532-44-6899; fax: +81-532-44-6873.
Email address: mura@tutkie.tut.ac.jp (Kazushi Murakoshi).

Article published in Biosystems, 80(1): 37-40, 2005. doi:10.1016/j.biosystems.2004.09.031



approaches (Breiman, 1994; Schapire, 1990; Tibshirani and Knight, 1995) have
been developed to cope with this problem. These techniques, however, are
ineffective in on-line learning, where a training set is not provided beforehand.

The adaptive natural gradient learning (ANGL) algorithm (Amari et al., 2000;
Park et al., 2000) is known to enable ideal performances for the on-line learning
of MLPs. The ANGL algorithm avoids plateaus, while the backpropagation
(BP) type learning algorithms (Rumelhart et al., 1986) do not. However, the
ANGL algorithm still has an overfitting problem. For the overfitting problem,
Park et al. (2004) have proposed a method using optimized regularization. This
method, however, is not designed for on-line learning but for batch learning.

To overcome the overfitting problem for on-line learning, we have investigated
feeling-of-knowing (FOK). The FOK is a subjective sense of knowing a thing
before recalling it. We hypothesized that the overfitting problem can be solved
using the FOK: we do not execute the learning of a training data at a high
FOK, while we execute the learning of a training data at a low FOK.

The characteristics of the FOK have been investigated in psychological ex-
periments (Hart, 1965; Metcalfe, 1986; Reder and Ritter, 1992) and recently
in functional magnetic resonance imaging (fMRI) experiments (Kikyo et al.,
2002; Maril et al., 2003). Even from these experimental data, the neuronal
mechanism of the FOK has not been clarified to the extent that we can formu-
late a plausible biological model. The results of these experiments, however,
suggest that the processes of FOK are different from those of knowing the
answer: FOK is part of an unsupervised learning process while knowing the
answer is part of a supervised learning process. Thus, we have selected self-
organizing maps (SOMs) (Kohonen, 1995), one of the unsupervised learning
methods, as a model of FOK.

In Section 2, we propose an algorithm for avoiding overfitting in MLPs with
FOK using SOMs. Section 3 shows the results of computer experiments. Sec-
tion 4 concludes this paper.

2 MLPs with FOK using SOMs

We illustrate the structure and information flow of MLPs with FOK using
SOMs in Fig. 1. The left-hand part of Figure 1 indicates MLP learning while
the right-hand part indicates SOM learning. The MLP part learns the input
data vector x using an ANGL algorithm (Amari et al., 2000; Park et al., 2000).
In parallel with the MLP learning, the SOM part learns the input vector x as
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Fig. 1. Structure and information flow of MLP with FOK using SOM.

follows (Kohonen, 1995):

xT(t)mc(t)

‖x(t)‖‖mc(t)‖ = max
i

{
xT(t)mi(t)

‖x(t)‖‖mi(t)‖
}

, (1)

mi(t + 1) =
mi(t) + α′x

‖mi(t) + α′x‖ , (2)

α′ = α exp

(
−‖rc − ri‖2

2σ2

)
, (3)

where mi is the weight vector of the i-th node in the SOM, α is the learning
rate, t is a discrete time index, rc and ri are position vectors at the winner node
c and the i-th node, respectively, and σ is variance of the Gaussian function.
In Equation (1) the inner products of x and mi are divided by their norms
for standardization.

We define the left-hand side of Equation (1) as similarity(t):

similarity(t) =
xT(t)mc(t)

‖x(t)‖‖mc(t)‖ . (4)

While similarity(t) does not need the answer, reliability(t) which needs the
answer is calculated as follows.

For each time step, the class counter of the winning node c is incremented by
one. Afterwards, the largest class counter of each node is used as its label. In
each node, reliability (t) is calculated by dividing the largest class counter by
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the summation of all class counters.

As mentioned in Section 1, the neuronal mechanism of the FOK has not
been clarified to the extent that we formulate a plausible biological model.
Here, we formulate a simple computational model of FOK on the basis of the
consideration that FOK is a sense of knowing a thing before recalling it. Using
similarity(t) and reliability(t−1) of the winning node, FOK(t) is calculated
as the geometric average between them, as follows:

FOK(t) =
√

similarity(t) × reliability(t − 1). (5)

The reason reliability(t−1) is used instead of reliability(t) is that reliability(t)
requires the answer for the input vector at time t, whereas FOK does not need
the answer (Hart, 1965; Metcalfe, 1986; Reder and Ritter, 1992; Schunn et al.,
1992).

Along with the hypothesis described in Section 1, we use FOK(t) as a learning
controller in MLPs and SOMs. Concretely, neither MLPs nor SOMs learn with
probability FOK(t) when the class for the input x agrees with the label of the
winning node, because learning at high FOK(t) includes the risk of overfitting.

3 Computer experiments

We conducted computer experiments to compare the mean square error (MSE)
obtained for the test set using the conventional MLP method and that ob-
tained using the proposed MLP method with FOK. A number of learning
problems, namely, the iris problem, the glass problem, and the vehicle prob-
lem, were selected from the UCI machine learning database (UCI Machine
Learning Group, 2003). The numbers and parameters used in the experiments
are shown in Table 1. For every independent paired run of the two methods,
we randomly selected approximately two thirds of all instances in the bench-
mark problem for training, and the remaining data were used for testing. In
each experiment, the initial values of the weights in MLP and SOM were ran-
domly selected subject to the uniform distribution on the intervals [−0.1, 0.1]
and [0.45, 0.55], respectively. We conducted twenty runs for 100000 steps, with
different initial values for each algorithm and each problem. At each step, the
input x was randomly selected.

The obtained results are shown in Table 2. In each learning problem, there was
a significant difference using the paired t-test (p < 0.01) in terms of the mean
± standard deviation (s.d.) between that in the proposed MLP with FOK
using SOMs method and that in the conventional MLP method, as shown in
Table 2.
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Fig. 2. Learning curves of test set for the iris problem.
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Fig. 3. Learning curve of FOK(t) of an input instance for the iris problem.

We show an example of a learning curve of testing MSE for the iris problem in
Fig. 2. We can confirm that the learning curve obtained with the conventional
ANGL method reveals overfitting while those obtained with the proposed
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ANGL with FOK method avoids overfitting. The learning curves of testing
MSE for the other problems were similar to that shown in Fig. 2.

Figure 3 shows a learning curve of FOK(t) of an input instance x for the iris
problem. As the learning step progresses, FOK(t) increases, which results in
the avoidance of the overfitting exhibited in Fig. 2.

4 Conclusion and discussion

We propose a learning method to overcome the overfitting problem in on-line
learning. In this method, the learning process advances according to the degree
of FOK calculated using SOMs. Consequently, the proposed MLPs with FOK
using SOMs method avoids overfitting.

In another method, BP-SOM (Weijters et al., 1997; Weijters, 1995; Weijters et
al., 1998), SOMs were also used to avoid overfitting. The input of the SOM in
the BP-SOM method is the hidden layer output of the MLP while the input of
the SOM in our proposed method is the input layer output of the MLP. The
MLP using BP-SOM method learns its weights according to the learning of the
SOM. That is, the SOM of the BP-SOM method directly affects the learning
of the MLP. Such learning carries the risk of destroying convergence in the
learning of MLPs, while our proposed method does not. Actually, the ANGL-
SOM, a method using the ANGL algorithm instead of the BP algorithm in
the BP-SOM method was not able to learn well. Such problems, on the other
hand, do not arise in our method, because the ANGL algorithm and SOMs
perform learning in parallel.

The map size of the SOM in this study was fixed. The size affects the capacity
of the FOK on our proposed method. On the other hand, capacity of human
FOK seems to be adequately adjusted. Realizing a method of adjusting the
map size is a future work.
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Table 1
Numbers and parameters used in experiments.

data name iris glass vehicle

number of instances 150 214 846

number of attributes 4 9 18

(=number of MLP input units)

number of classes 3 7 4

(=number of MLP output units)

map size of SOM 6×6 6×6 6×6

number of training data 100 150 550

number of testing data 50 64 296

learning rate of MLPs 0.001 0.001 0.001

learning rate of SOMs 0.001 0.001 0.001

variance of Gaussian function in SOMs 1.0 1.0 1.0

Table 2
Results.

data name average ± s.d. of last MSE average ± s.d. of last MSE

for testing data with ANGL for testing data with ANGL-FOK

iris 0.0166 ± 0.01114 ∗ 0.0143 ± 0.01049

glass 0.0506 ± 0.00738 ∗ 0.0433 ± 0.00373

vehicle 0.0524 ± 0.01133 ∗ 0.0443 ± 0.00512
∗There was a significant difference from the other method using paired t-test
(p < 0.01).
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